Обозначение на схемах электро

Обозначение на схемах электро
Обозначение на схемах электро
Обозначение на схемах электро
Обозначение на схемах электро
Обозначение на схемах электро

Общие сведения о транзисторах

 

Транзисторы представляют собой электропреобразовательные полупроводниковые приборы с одним или несколькими электричес­кими переходами, пригодные для усиления мощности сигнала и име­ющие три (или более) внешних вывода. Наиболее распространенные транзисторы имеют два электронно-дырочных перехода. В двухпереходных транзисторах используют два различных типа носителей за­ряда (электроны и дырки), поэтому их называют биполярными.

Основным элементом биполярного) яв­ляется кристалл полупроводника, в котором с помощью примесей созданы три области с различной .проводимостью.» Если средняя об­ласть имеет электронную проводимость типа n, а две крайние — ды­рочную проводимость типа р, то структура такого транзистора обо­значается р-n-р в отличие от структуры n-р-n, при которой транзис­тор имеет среднюю область с дырочной, а крайние области — с электронной проводимостями.

Средняя область кристалла полупроводника , слу­жащая основой для образования электронно-дырочных переходов, называется базой, крайняя область , инжектирующая (эмигрирую­щая) носители заряда, — эмиттером, а область , собирающая ин­жектированные носители заряда, — коллектором. К каждой из двух областей припаяны соответственно эмиттерный Э, базовый Б и кол­лекторный К токоотводы, которыми транзистор включается в схему. Кристалл укрепляют на специальном кристаллодержателе и. помеща­ют в герметизированный металлический, пластмассовый или стеклян­ный корпус. Внешние токоотводы электродов проходят через изоля­торы в дне корпуса. 

Электронно-дырочный переход между эмиттером и базой называ­ется эмиттерным, а между базой и коллектором — коллекторным. Базовая область транзистора выполняется с очень малой толщиной (от 1 до 10 — 20 мкм). Различна степень легирования областей. Обычно концентрация примесей в эмиттере на 2 — 3 порядка выше, чем в базе. Степень легирования базы и коллектора зависит от типа прибора.

Для работы транзисторов к их электродам подключают посто­янные напряжения внешних источников энергии. Помимо постоянных напряжений к электродам подводят сигналы, подлежащие преобра­зованию. В связи с этим различают входную цепь, к которой подво­дят сигнал, и выходную, куда включают нагрузку, с которой снима­ют сигнал. В зависимости от того, какой из электродов при включе­нии транзистора является общим для входной и выходной цепей, различают схемы с общей базой ОБ, общим эмиттером ОЭ и общим коллектором ОК.

  • В схеме с ОБ входной цепью является цепь эмитте­ра, а выходной — цепь коллектора,
  •  в схеме с ОЭ  вход­ной — цепь базы, а выходной — цепь коллектора,
  • в схеме с ОК  входной — цепь базы, а выходной — цепь эмиттера.

В зависимости от полярности напряжений внешних источников, подключенных к эмиттерному и коллекторному переходам, различа­ют активный, отсечки, насыщения и инверсный режимы работы тран­зистора.

Активный режим используется при усилении слабых сигналов. В этом режиме напряжение внешнего источника к эмиттерному пе­реходу включается в прямом, а к коллекторному — в обратном на­правлении. Эмиттер инжектирует в область базы неосновные для нее носители заряда, а коллектор производит их экстракцию (выведе­ние) из базовой области.

В режиме отсечки к обоим переходам подводят обратные на­пряжения, при которых ток, проходящий через транзисторы, ничтож­но мал. »

В режиме насыщения оба перехода транзистора находятся под прямым напряжением; в них происходит инжекция носителей, тран­зистор превращается в двойной диод, ток в выходной цепи макси­мален при выбранном значении нагрузки и не управляется током входной цепи; транзистор полностью открыт. В режимах отсечки и насыщения транзисторы обычно используются в схемах электронных, переключателей. .

В инверсном режиме меняются функции эмиттера и коллектора: к коллекторному переходу подключают прямое, а к эмиттерному — обратное напряжение. Однако такое включение транзистора неравноценно из-за несимметрии структуры и различия концентрации носителей в его областях.

Принцип действия транзистора в активном режиме рассмотрим с помощью схемы с ОБ При включении напряжений эмиттерного EЭб и коллекторного EКб источников изменяются потен­циальные диаграммы переходов. Напряжение EЭб снижает потенци­альный барьер эмиттерного перехода, вследствие чего через него из эмиттерной области яачнется инжекция дырок в базу, а электро­нов — наоборот, из базовой области в эмиттерную. Концентрация ос­новных носителей в эмиттерной области на 2 — 3 порядка выше, чем в базе, поэтому инжекция дырок в базу Iэр превышает поток элек-. тронов Iэn из базы в эмиттер. При этом через эмиттерный переход проходит суммарный ток эмиттера Iэ=Iэр+Iэп. Убыль дырок в эмиттере компенсируется уходом из него во внешнюю цепь такого же количества электронов.

В результате повышенной концентрации дырок в базе происхо­дит их диффузионное перемещение от эмиттерного к коллекторному переходу. На этом пути часть дырок рекомбинирует с электронами базы и создает в цепи базы небольшой рекомбинационный ток Iб. Чтобы уменьшить вероятность рекомбинации дырок в базе, толщину базы (w<0,25 мм) выбирают меньше их диффузионной длины дырок (для германия L=0,3-5-0,5 мм).

Транзисторы, в которых отсутствует электрическое поле в базе, а перемещение (дрейф) носителей тока происходит за счет диффу­зии, называют бездрейфовыми, транзисторы, в которых за счет не­равномерной концентрации примесей в базе возникает электрическое поле и перемещение носителей тока через базу происходит под дей­ствием сил этого поля, — дрейфовыми.

К коллекторному переходу напряжение внешнего источника под­ключают в непроводящем (обратном) направлении. Электрическое поле, создаваемое этим источником, будет тормозящим для основ­ных и ускоряющим для неосновных носителей тока. Под действием этого поля дырки, инжектированные в базу, будучи неосновными но-сителями тока, перемещаются из базы в коллекторную область. Из­быток дырок в коллекторе компенсируется током электронов от ис­точника Eк, в результате чего во внешней цепи коллектора прохо­дит ток Iк.

Если транзистор включен в схеме усилителя, то к входным за­жимам кроме постоянного напряжения смещения Еэ подключают переменное напряжение сигнала UBXt которое нужно усилить, а к выходным зажимам кроме напряжения источника Ек — нагрузку Rн. Прямосмещенный эмиттерный переход обладает малым сопротивле­нием, поэтому,даже незначительные изменения потенциала в цепи эмиттера ua=E9+UB]i (вследствие изменений напряжения сигналу Uвх на входе) вызовут большие изменения тока. Изменения тока эмиттера приведут к изменению тока и напряжения в выходной (кол­лекторной) цепи. При соответствующем подборе нагрузки Rн мож­но получить большое изменение выходного напряжения UВых и мощ­вости, т. е. осуществить с помощью транзистора усиление сигнала за счет энергии источника Ех. Эффективность такого усиления сигнала по напряжению оценивают отношением изменения выходного на­пряжения к вызвавшему его изменению входного напряжения, т. е Kн=ДUвых/АUвх.

Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро Обозначение на схемах электро

Тоже читают:



Застежка своими руками из ниток

Как сделать оригами кого любит

Заколки на волосы своими руками и

Стойки для вышивки своими руками

Шоколад с печеньем своими руками